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The problem of the stability of the steady-state motion described by ordinary 
differential equations with time-lag Is considered In the case when the char- 
acteristic equation of the first-approximation system has m roots with zero 
real parts and no roots with positive real parts. 

It is shown that, as In the case of ordinary equations [I], this problem 
is equivalent to the problem of the stability of motion of a certain flnlte- 
dimensional subsystem of order m obtained by selecting the critical degrees 
of freedom. I n this connection the approach to the theory of critical cases 
In problems with retardation, worked out by Shlmanov [2 and 33, is developed. 

1. Formulrtlon of the problem. Let us consider a system whose perturbed 

motion Is described by equations of the form 

dx 0) - = Ax (t) + A,x (t -q + x (5 (Q x (t -r)) 
dt (1.1) 

Here x Is an n-vector, T = cost > 0 Is the magnitude of the lag, A, 

A5 are constant matrices of the corresponding dimensions, X(x,y) 1s an 
n-vector-function which In the region 

IlXll<H~ IIYKH (H = const) w 
satisfies the Llpschltz condition 

II x (x(l), y(l)) - x W2), Y(2)) II < q (II x(1) - Lx@) 11 + \I y(l) - y(2) 11) (1.3) 

with a small quantity Q 

Q = L (II 39) II + II d2) II + II Y(l) II + II Y@) II,’ (1.4) 
where L and y are positive constants. Conditions (1.3) and (1.4) charac- 

terize the nonlinearity of the component X (5 (t), 5 (t - T)) In (1.1). 

In (1.2) to (1.4), as everywhere In what follows, 
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Let us consider the space CI_+,~] of continuous functions given on the 

interval [- 7, 01. In E4] (p.ljj) it is shown that in the space Cl-r,ol 

Equation (1.1) corresponds to the differential-operator equation 

dx,(@)/dt = Ps,(~) + R k+(O), xt (- r)l (1.6) 

Here X@)=J:(t+6)(-T<+<\(0) is th e segment of the trajectory 

corresponding to the Instant t in the system (1.1); the operator p is 

defined by the equality 

dx (t-f) / d6 (---<fi<00) 
px(e) = { ‘4x (0) + A,x (- z) (6 = 0) 

The nonlinear operator 

(1.7) 

(1.8) 

Everywhere In the following it is assumed that the argument 6 varies 

within the limits - T < 6 < 0. The spectrum of operator p in (1.7) Is 

determined ([4](p.164)) by the roots of the characteristic equation 

det[A- hE + A,e-AT] = 0 (1.9) 

Let us assume that Equation (1.9) has m roots A, with Re Xi= 0 

(t = l,..., ml9 while the remaining roots have negative real parts. It is 

known that m is a fInIt number. 

Let 1, Jordan sequences of root elements of the operator P (1.7) cor- 

respond to the elgenvalue ?Q of multlpllclty Vl, 

A[% k, &I 

(i. = 0, . . . , m, [k,]; k, = 1, . . . . 1,; !0 + m, [I] + . . . + m, [1,] = ma ; ml + . . . + m, = m) 

(the value i,= 0 corresponds to the free term) [ 51. 

Then, the operator conjugate to (1.7) 151 

dx(---)/d(--0) (---t\(<o) 
- p*x (- *) = { ‘4x (0) $ ..I52 (z) (6 = 0) 

(1.10) 

has r elgenvalues h," = --h 3 of multiplicity rnc ; to each of them there 

corresponds 1, Jordan sequences of root elements of the operator P* (1.10) 

d,* [ - 6; k,, i,] 

{iO = O,..., m, [k,]; k, == I,.,., I,: 1, :- nz, [I] $ . . . f wJ [I,] = m,; ml _I- + m, = In) 

(In (1.10) and everywhere In the following the sign / denotes tranSpoSi- 

tlon.) 

Let us denote [5] the quantity (Y (-- 6) E c,c, 51) by the symbol ((0, Y) 

(cp, y) = cp’ (0) 7 (0) y- f cp’ (6) -‘L’T (6 i q d6 (1.11) 

and we shall represent every element c~(6)EC,_~,c] In the form 
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tpm = 2 P) + i 
a=1 k,=l i, -0 

by setting the constants 

(1.12) 

Ya Ika, ial = fa [CP (6); km mo iFco1 - 471 = (cp, AT* [rc,, ma [k,] - ia]) (1.13) 

From (1.12) and (1.13) it follows that z(6) is an element of the func- 

tional subspace L, defined by the equalities 

(Lf) f. [+9); k,, i,] = 0, (ia = 0, . . ..m. [k,l; k, = 1, . . ..I.; 0 = fr . . ..r) (1.14) 

Ey virtue of (1.12), for the element x((e) of the trajeCtOrY of system 

(1.1) we have 

~~(~)=z*(~) = i: ; ma$%a[8;ka, i&olt; kor &I (1.15) 
a=% ka=l ia= 

where ya [ t; ka, ia] = fa [Xf (e); ka, m, [ka] ---ia]. the ~ariahles 21 (e),?/(t) = {Yi (t) 
(i = 1,. . . , m)} = {y, [t; k,, i,], i, = 0, . . . , m. [ka]; k, = I,..., &(a z il**.~)). 
satisfy Equations 

Here 
dzl (e) / dt = Pq (6) + 2 [y (t), zf(O), zt (- % ~1 (1.17) 

-hlal o...o - 

G= 
0 hz aa. . .O 

= const (m x 111 - matrix) (1.18) 
. . ..I. 

-0 0 0. ..I,_ 

The coefficients at equal either zero or unity dependirg on the structure 

of the chosen part of the spectrum {Ai; Re Ai = 0; i = 1, . . . , m} of 
the operator p defined in (1.7); the m-vector-function Y~zJ,.z(~), z(--)I 

and the real n-vector-operator z[y, Z(O), 2(-Z), 6] are determined thus: 

Y [y, Z(O), z(--)I = {Yi(i=~,...,m)}= {Y~[Y, z(O), zf-rZ)t Ic,, i.1 = 

=do*[O;ka,m~[k.)-ia].X(Z(0)+~ g ma$‘d.lO;ka, ’ 
.$==I k*=l ia-= 

L31 y, fkJ, &Jl (1.19) 

z(-r)-+ . . . ; i,=0,. ..,m,[k,,]; k,=i,. . . 
) 

,!0(:=1,...,r)) 

ZIy, z(O), z(-T), S] = R[z(O)+ &l ; y' d, to; Ii;, 
n_:lko -_:I i, -0 

~.12/,[h, inI (1.20) 

Let the chosen part of the spectrum contain Q zero and p purely lmagl- 

nary numbers 



966 1u.s. osipov 

By passing to real form of the equations, we Introduce the notations 

u=(Vi(i=i,... ,&I = W,(i* f,...,q); Rey,,, Im?h,l(k=1,...,p/2)} (1.21) 

F[v, z(O), z(--)I= {Fi; i=i,...,m} = (1.22) 
={Y,,; i-_t,...,q; ReY,,;ImY,,; k=i,...,p/2 for ~,j=vj(i=i~...,ql 

Re ysk = ve+k; Im ysK = Q+M, (k==l,...,p/2)) 

Z[v, z(O), +--q, 61= (1.23), 
= (2 [y, z (0), z (- z), 61 cor yri = + Y,.$ = F, fi = *, . . - I 4); Re ysk = upi* 

Imy, = vq+kflt Re Y, = Fqlk, h 1-8 = Fp+k+l (k = 1, . . . ,~,‘2,) 

Then the equations of motion (1.16) and (1.17) can be represented as 

da/dt = Qu + F[v, q(O), zt(--.t)] 

dz,(6)/dt=Pz,(6)+ZIv,z(O),zC--), 61 

Here the constant m x m matrix 0 has the form 

-OaFl 0 . . . O.- 

0 0 ar,... 0 

. . * . . ‘ . . . 

00 0 . ..Ef* 

-00 0 . ..o _ 

- 0 -- ImhSl a,, 0 . . . 0 0 

Imh,,O OaS,... 0 0 

Qa= . . . . . . . * . . . . . . * . . . . . . 

(1.24) 

(1.25) 

(1.26) 

0 0 0 o... 0 - Im $,, 
0 Im 0 '- 0 0 0 . . . h,, - 

The problem of the stability of system (1.1) and of the system (1.241, 

(1.25) are equivalent. 

As in the case of systems described by ordinary differential equations 
E,;l,;,;he,y.ue;tion arises whether the properties of stability of the "trun- 

dv / dt = Qv + P [v, 0, 0] (1.27) 

teitermine the analogous properties of the complete system (1.24), (1.25) 
.e. of system (1.1)). 

In Section 2 below we answer this questlon under the assumption that the 
right-hand sides of system (1.24), (1.25) are subject to certain restrictions. 
As in the case of ordinary differential equations [l] we can show that for 
analytic right-hand sides of s stem 
takes the system (1.24), (1.25 

(1.1) there exists a transformation which 
to the form where these conditions are satis- 

fied. The proof of the latter assertion is omitted here. 

The proof of the reduction principle is carried out here analogously to 
the proof (*) of this principle in the case of ordinary equations Cl]. 

*) Erugin has remarked C61 that the proof in [l] contains a serious inaccu- 
racy. In the present paper this remark is taken into account and the proof 
has been supplemented. 
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2, am Nduotiol3 prino~plo * 
metric 

In the space c~_+,~] let us introduce the 

Ils(e)ii~=SU~(~~lh(B)/a)% (2.1) 

By virtue of (1.3) and (1.4) the functions F[z;, z(O), z(-r)], Z[v, z(O), 
z(-- %),*)I in the region 

(G) IMKHl, 11 2 (6) /I+ < Hl (2.2) 

satisfy Lipschitz conditions with small multipliers 

112 fv', z'(O), z' (--q, 61 -2 fv", z"(O), zx c--q, SIllT< 

6 9a (P'- 4 + II 2' (6) - ZN WIIT) (2.4) 

!I2 = 352 (IIv'll+ IIv"II + p'(-@)IIr + lkw) lW {&2=co~t>o) 
Here the quantity y is the same as in (1.4), and the positive constant 

p1 is computed in a specific manner from the constant x of (1.2) in accord- 

ance with (1.12), (1.5) and (2.1). 

We cite some definitions Cl]. Consider the system of equations 

du / dt = F [v, tl (2.5) 

where the continuous m-vector-function flu, $1 satisfies in region (2.1) 
the Lipschitz condition 

l/F 1,(l), tl - F j&@f, t) 11 <,<L if 29 - ZPjj (L = const > 0) 

and F [0, t) K 0. In region (2.1) let eu, tl admit of the representation 

F [v, tl = F, b, tl + f’, iv, tl (2.6) 

where f2[v,t] denotes the set of terms of order in v higher than N and, 
moreover, 

IIF, tu, tlII dKll #+Y (AT = const>O,iV = con&), I) (2.7) 

where the quantity .+ is the same as that in conditions (2:3) and (2.4). 

Definition 2.1. The unperturbed motion u = 0 of system (2.5) 
is said to be stable regardless of terms of order higher than N , If for 
any positive number 
n(e, Ir) 

e , as small as desired, there exists a positive number 
depending only on c and Y such that for all solutions of 

Equation'(2.5) for which at the initial'instant t = 0 the conditions 

II v (0) II < r) (s, K) (2.8) 

are satisfied, for all t > 0 the inequality 

II " 0) II < 8 (2.9) 

will be satisfied for any choice of the funation 
mate (2.7) in region (2.1). 

fe[u, $3 satisfying estl- 

Definition 2.2. The unperturbed mot&on v - 0 of system(2.5) 
Is said to be unstable regardless of terms of order higher than g If for 
the same condltlons on the function 
E(K) 

FJv, t] there exists a positi;e number 
depending only on K such that no matter how small the number n>C 

Is, &ere is found a vector ‘vO(X, n) depending only on X and n for 
which ~!r"(A',~])ij<~], and, the solutio; v(t) of Equations (2.5) with'initial 
condition 
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u (0) = lJ” (K, 9) (2.10) 

will satisfy the equality 
II u (h) II = J3 WI (2.11) 

at some Instant t I tl= const . 

T h e o r e m 2.1. Let the right-hand sides of system (1.24), (1.25) 

Satisfy in the region (2.1), besides the conditions (2.3) and (2.4), also 

the conditions: 

1) The unperturbed motion u = 0 of the "truncated" system (1.27) is 

stable (asymptotically stable) or mstable regardless of terms of order 

higher than N in the sense of Definitions 2.1 and 2.2. 

2) The operator Z [v, 0, 0, 61 satisfies the estimate 

IlW.5 0, 0, w<LI141N+y1 (La = const > 0, yl = const > 0) (2.12) 

Then the property of stability of system (1.24), (1.25) (and, consequently, 

of system (1.1)) coincides with the property of stability of the wtruncatedn 

system (1.27). 

Proof. Let the unperturbed motion v = 0 of the 'truncated" system 
(1.27) be stable (in the sense of Definition 2.1). 

Without loss of generality we can take It that the matrix (1.26) 

Q = {QLi=, + Q* (2.13) 

where the matrix Q* satisfies the estimate 

II Q* II<% (Ed arbitrary positive number) (2.14) 

Indeed, this always can be achieved by a nonsingular linear real tranS- 

formation of the vector varlable u . 
In the subspace L, (1.14) let us consider Equations 

d*= Put(e), ut (3) E Lf (1.14) (2.15) 

any solution ~~(6) of system (2.15) (with (c uo(6)E &(1.14)) satisfies the 
estimate 153 

II ut (Wll, < B II uo (WI, exp [- Ptl (B, p = const > 0) (2.16) 

But then on the basis of the result&In c41 (pp.191-193) in the subspace 
z, (1.14) a continuous functional v [zL@)], satisfying the estimates 

cl 11~ (8)!l,a< IT [u (611 0 c2 /iu (sIlTa (2.17) 

< - c3 II u mlL2 (2.18) 

( V [u(l) (S)] - V [u@) (S)]l < Y II u(l) (6) - uf2) (S)ll, max (II u(l) (S)ll,, II u@) (S)l!,) (2.19) 

can be constructed. 

Here Cl,..., c4 are positive constants. 

Let us make a change of variables in (1.241, (1.25) by setting 

2 (f+) = II 2’ I? -4 (0) (2.20) 

Transformation (2.20) will be used only In the region G:cG (2.1) of the 
space {v,z(~)}, where the quantity /14(6)& is bounded 

(GE) II f (~)ll< Ha (2.21) 
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Here pa Is some positive constant. 

In the variables v(t),Q(ft) Equations (1.24), (1.25) take the forms 

-$ = Qv + F [v. 0, 01 + F+ iv, St (Oh Et (- ~11 (2.22) 

q = PSt (6) - iv II v Il-a v’Qvft (fi) + z* Iv, 4t (01, 4 (-- ~5), 61 

where the functions 

(2.23) 

F* [v, e(O), 4 (-%)I = F [v, IIrIIN4 (O), l141NE (-TN- Ffv, 0, 01 (2.24) 

z* [v, 5 (01, 5 (-‘CL 61 = II v bN 2 [vs II 4IN E (Oh II v IIN 5 t- 4, 61 - 
- N /I v llv2 v’F 1~. II v IIN E K$ II v IlN 4 (-- r)l (2.25) 

satisfy the estimates 

II p* Iv, 4 (Oh 4 (- q111-G L5 II 2) II N+y (~55 = const > 0) (2.26) 

z* 10, 5 (O), 4 (-q, 61 = 0 (2.27) 

in the region GE (2.21), by virtue of conditions (2.x), (2.4) and (2.12). 

Let there be given an arbitrary positive number e < R, . 
GL (2.21) let us consider the hypersurface M, 

In the region 

(Ml) V R (611 = h (e) (2JJ3) 

where ~~(0) is a constant satisfying the condition 

O< h(e)<c1e2 (2.29) 

Then, by virtue of (2.17) the estimates 

IL (s) <II 5 (WI, < E for g(6) from Ml (2.30) 

are satisfied, where u(e) is some positive constant. 

Let us compute lim sup AV/At as At - + 0 by virtue of (2.23) on the 
hypersurface N, (2.28), taking estimates (2.17) to (2.19) and (2.30) Into 
account. For brevity we introduce the notations: Et [6;(2.23)] is an element 
of the trajectory of system (2.23) and &*[@;(2.15)] Is an element of the 
trajectory of system (2.15). 

We have 

- ’ [htA.t [ 6; w5)iii d - ~3 ii Et @)iiT2 + ‘4 ‘$ “2 $ 111 tt+At 16; (2’23)1 - 

- kt+at 10; (2.15)1i1r max (11 tt+At [ 6; (2.w1iiT9 ii gt+Ath i2w15)11iT)1 4 - cs iI 61 wb’ + 

+ iv II v II-” I V’QV I II Et Wll,” + cr II Et Wll, II Z* Iv, 41 (Oh Et (- %I, ~111, 

Here it was assumed that Et [6; (2.23)]= Et I@; (2.15)]. 

Taking into account that V’iQ> v=O; when 
ber c1 In (2.14) from the condition cl< c3/N 

di=O and choosing the num- 

(2.28) we obtain the estimate 
on the hypersurface & 

d - (CQ - NEI) pa (E) + w II Z+ tv, E (Oh 4 (- ~1, -rrIll, (2.31) 

From the property (2.27) of the function z* Iv, f,(O), E(--z), 61 and from 
estimate (2.31) It follows that there exists a positive number h(c)< e such 
that 

(2.32) 
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Let &"(8) be an arbitrary function satisfying the condition 

St"(e) E GE(2.21) Ior t >o (2.33) 

In (2.22) let us put &(e)=Et"(6). We get quations 

dv /dt = Qv + F1 [v] + F* [v, t] (2.34) 

Here the function Fl[u] denotes the set of terms of order higher than ,V 
in the function flu,O,O] of (1.2'7) and, consequently, by virtue of (2.26) 
and of condition (1) of the theorem, the function 

F* Iv, tl = F Iv, 0, 01 - Fl Iv] + F* ID, 41” (0). Et” (- 41 
satisfies the estimate 

when Et0 E GE (2.21) 
II F* Iv, till < K1 II v IIN+Y (2.35) 

Here I( IS a positive constant depending only on the structure of 
tlon (2.22) and not depending on any particular choice of &"(@))E GE 
In accordance with the condition for the stability of the Ntruncated" 
(1.27) regrdless of terms of order hi her than N 
can find a positive number B(h(e),J 

from the number h 
such that f&r all solutions of 

which satisfy 
II v Wll G 6 @ (4, Kd (2.36) 

at t-0, the estimate 
II v Wll< h (e) (2.37) 

will hold for all t > 0 . 
However, if the function &O(6) satisfies (2.33) on the Interval [O,T = 

- ConstJ, then all the solutions' of (2.34), which at the initial instant 
t = 0 satisfy Inequality (2.x6), will satisfy inequality (2.37) on this 
same interval. 

In the space {r,s(@} let us consider the hypersurface M2 

(Ma) V Iz (@)I= 12(e) (2.38) 

where IS(S) Is some sufficiently small positive number which will be used 
later. In the space Jv,z(@} let us define two regions G1 and G, sy set- 

ting 
(Gl) II 8 II d ‘I W, v IE WI < h (4 (2.39) 

(Gd II v II d q (e), V I4 @)I > II (e), JJ [z (WI d 1~ (e) (2.40) 
Here n(e) Is a positive number satisfying conditions 

tl (s) < 6 (h (s), &) (2.41) 

If [E (WI < h(e) for 115 (@II, < q (e) (2.42) 

Such a choice of the n(e) Is possible by virtue of property (2.17). 

Prom (2.t71, (2.39) and (2.40) It follows that the union G* of regions 
G, and Gs(G - GIUG,) contains the null element {V = 0, z (6) =.41 as an 
interior point. For sufficiently small Z,(s) we have G* C G (2.1). 

Let us first assume that the initial perturbations belong to the region 
Cl (2.39). Since GIC Gt (2.21)the equations of motion can be considered In 
the forms (2.22) and (2.23). Let v(t) and 
(2.22), (2.23), for which the inequalities 

g,(6) be arbitrary solutions of 

II v Ml G rl Fh II E. (S)ll, < q(e) (2.43) 

are satisfied at the Initial Instant t = 0. 
From (2.43) It follows that for all t > 0 the inequalities 

II V (t)il < 6 II Ft @)ll, < e (2.44) 

are satisfied. 
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Indeed, the second inequality in (2.44), satisfied for t - 0 , will by 
continuity be satisfied for sufficiently small t . Let t - T be the first 
instant at which II& @)I/, = e. But then, on the basis of (2.28) to 2.3O), 

V [ST (WI > 21 @I (2.45) 
whence by virtue of the choice of n(e) it follows from (2.42) that there 
exists an instant t = t, E(O,T) such that the conditions 

St, (0) E Ml, (2.46) 

will be satisfied simultaneously. 

The function E,(e) satisfies condition (2.33) when t E(O,T) . Further, 
since the function u(t) will be one of the solutions of Equation (2.34) for 
Et "(e) = Et (6) and since the number n(c) is chosen in accordance with (2.41), 
Inequality (2.37) will be satisfied for u(t) In the whole time interval 

)snd, consequently, also the Inequality (2.32). The lattergp;;;;lcts 
Thus, Inequality (2.45) Is satisfied for all t > 0 . 

the preceding discussion it follows that the function v(t) satlsfiis 
inequality (2.37) for all t > 0 , whence b 
It follows that the first estimate In (2.44 3 

virtue of the condition h(c)<c 
holds for all t.> 0 . 

Thus, we have proved the conditional stability of the unperturbed motion 
u(t) = 0, ~~(6) = 0 of the system (1.24), (1.25) with respect to the Initial 
perturbations 
the conditions (F?$)). 

from the region cl (2.39) which are constrained by 

Let us show that from such a conditional stability follows the stability 
of the motion u (t) = 0, Zt (6) = 0 with respect to any sufficiently small 
initial perturbations. 

In (2.40) we choose the number la(e) from the conditions 

Z2(s)<s, 12(e) <w2p2 (g) r121V (4 (2.47) 

(1.24,,(1.25, co 
(2.48) 

for ~(6) from ~~ (2.38) In region co (2.40). 

The second condition in (2.47) signifies that In the space {v,z@} the 
hypersurface V [z@)] = L(E) (2.38) intersects the hypersurface V [g(6)] = 

Z1(e) (2.28) when /VI\< q (s),so that from the region Oa (2.40) It Is 
;mpossible to derive the element (u, r (@I, by continuously deforming it and 
yet not intersecting hypersurface (2.28) or (2.38). 

It is possible to select the number 
(2.48) also. Indeed, let-us compute 

Z.(E) so as to satisfy condition 

the motion of system (1.24), (1.25). 
limsup AV [z,@)]/At as At -+ 0 along 
Taking estimates (2.17) to (2.19) Into 

account here, we get 

(1.2G4.25) 
g -call 21 (6) II:' + 

+c4nz,(e)ll(IIz[~.0,01 ~lll,+llz[ v, zt (O), q (-T), 61-Z [v, 0, 0, Sill,) (2.49) 
Since the condition 

is satisfied In the region C 
mates (2.4 

(2.40) by virtue of (2.17),then from the estl- 

t 
(2.12), (2.38), 72.17), (2.49) follows the possibility of choos- 

ing an Zz l) satisfying (2.47) and (2.48). 

Let us consider an arbitrary motion r(t), Jt (6) of system 
whose Initial perturbation {v(o), z,, (fi)} lies in the region 

gY virtue of the choice of 
the motion 

Z=,(C) In accord~jce(o~l~h( kz)Gand 
L.(I) zI (c)), starting from the point 6 

(2.48), 
either 

remains In the region cI for all time, and then'by 'thi way ln*whlch the 
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latter was constructed, the inequalities 

II ?J (t) II < 8, II z1 (6) II? < E (2.51) 

will be satisfied for all 
t - m), 

t> 0 (moreover, lim u (t) = 0, lim Zt (ti) = 0 as 
or the motion v(t), ~~(6) leaves the region ca (2.40) thrtugh the 

hypersurface (2.28) and here necessarily when 11 ull<q(e). In the latter case, 
by what was proved earlier, when the motion ,,(t), Zt (6) falls Into the region 
C1 (2.39) it remains for all time In the region 

11 V II< h (E), V [E, (0)l<ll(c) (2.52) 

Thus, the stability of the unperturbed motion u(t) = 0, zI (6) = 0 of the 
system (1.24,(1.25) (and, consequently, the stability of the unperturbed 
motion x = 0 of system (1.1)) 
definition 2.1) of the motion 

follows from the stability (In the sense of 
u = 0 of the ntruncatednsystem (1.27). 

The geometric meaning of the reasoning carried out is clarified In Fig.1. 

Now let the unperturbed motion of system (1.27) be asymptotically stable. 

Let us consider an arbltray motion 2:(t), Et (6) 

of system (2.22),(2.23) with the initial con- 

is a sufficiently small positive num- 

ber. By virtue of the conditions of the theo- 

rem and on the basis of what has been proved, 

the unperturbed motion 2, z 0, Et (6) = 0 of 

system (2.22),(2.23) Is stable and, consequently, 

satisfies condition (2.33). 

, the unperturbed 

totlcally stable. And since the function u(t) 

is one of the solutions of (2.34) when&"(s)= 

Fig. 1 = Et (W, then It necessarily satisfies the 

limit relation 

lim 2, (t) = 0 for t-+ ot! 

for sufficiently small n In (2.53). 

(2.54) 

We can show that & (6) also satisfies (2.54). 

Let 1 be an arbitrary positive number as small as desired. Consider the 
set M3 of functions 5 (6) 

(IV,) :(o)t C<(Z.'I), L'[F (S)l> 1 (S.,) 

Let US substitute the function u(t) Into (2.23) and, under condition 
as .&t -+ 0 by virtue of the equations 

one of whose solutions will be function j, (6): &v repeating the 
argument; used to derive the estimate (2.32) and by taking the limit relation 
A;.::!,;;; function u(t) Into account, we conclude that there exists such 

t I tl beginning with which the InequalitY 

(36) 

will be satisfied for all solutions of Equation (2.23) when v - u(t) and, 
In particular, for & (0). In (2.56) the quantity v Is some positive con- 
stant. From (2.56) It follows that there exists an instant t = t,> tl 
beginning with which the Inequality 



ff Et Wl <l (2.57) 
Is satisfied, 

Indeed, if such an instant t = $ 
for t > tx, 

were not ta exist, i.e. &@)E MS 

then according to (2.563 the inequalityw(t)<w(ftJ- ~(t - iJ, 
would be satisfied for 'IJ (t) = v I& (0)l 
mate (2.17) when t>~(tJ/y + t, 

which contradicts the esti- 

Thus, inequality (2.57) is satiifled for all t>/ Ia=; Const. But from (2.17) 
and (2.57), because t is arbitrary, there follows the Limit relation 

lim & (8) = 0 for b--t_ 

which together with (2.54) completes the 
7 
roof 

of the motion r = 0, z*(V) = 0 of system 
of the asymptotic stability 

1.24),(1.25) uith respect to ini- 
tial perturbations constrained by the condition ll~~(~)~l~ <n. 

Fromtheproven conditional asymptotic stability follows the asymptotic sta- 

bility of the unperturbed motion 2: = 0,~~ (3) = 0 of system (2.22),(2.23) 

with respect tcr any sufficiently small perturbation ??(@, ~~(8). 

The proof of this assertion completely repeats the corresponding reasoning 
of the proof of the Stability of the motion v = O,+(i))-0 (given above) and, 
therefore, is not carried out here. 

Finalfy, let the unperturbed motion v * 0 of the *truncated" system 

(1,.277f be unstable (in the sense of Definition 2.2). 

Consider Equation (2.34). For the 'truncated" system (1.271, according 

to the condition for instability regardless of terms of order higher than N 

there exists a positive number e(KI), depending only on Ki, such that how- 

ever small the number n>C maybe, we can find a vector uO(I(r.q), depend- 

ing only on h', and n , for which I/?.? (K,, $// < q3 and in connectlon with 

this the solution e(t) of Equation (2.34) with the inftial canditlbn 

ZJ (0) = C'O (K,, 77) (2.58) 

will satisfy the equality 
I] D (Q j/ = it (8) < F, (2.59) 

ad some instant g = tl= const I where h(e) is defined in (2.321, 

Let us suppose 

tern (1.24),(1.25) 

for all solutions 

the inequalltZes 

will be satisfied 

that the unperturbed motion 2, ft) = 0, q (6)==0 of sys- 

is stable: there exists a positive number n such that 

of Equations (1.24) and (1.25) with the Initial conditfons 

li 71 (0) ii < 17, j 20 (6) ;jz G 11 (2.60) 

;j r(t) if< Wj, ~lZ~~~~~~<~~~~~ (2.61) 

for aX1 t > 0 . 

Let us pick out the solution r*(t), ~"'(6) with the initial conditions 

V*(o) = 8' (Kl, 11) (2.62) 

zo+ ftQ = q(Q), (I/y (S> 11: < with (q, !/u°F dmIE)/ Y’Zi)> (2.63) 

From (2.63) the estimate 

v &*(@I1 _=il@) 
(2.64) 

follows by virtue of (2.17) for the function &* (8) = ~~~*~~~~-~~~* (it) at 

the initiaf instant t = 0 . 
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Then from (2.32) and (2.64),follows the Inequality 

Prom the latter, by virtue of (2.29), follows the estimate 

II Et* P) IIT < 8 for t > 0 

(2.65) 

and, consequently, El* (&) satlsfies'conditlon (2.33). 

Let us set Et0 (6) = Et* (0) ln (2.34). Then, the solution of the equa- 

tion obtained, with the inltiai condition v (0) = u" (K1, $ will coincide 

with the function u*(t) at least until Ilu(t) h(c). But condition (2.59) 

is satisfied for u(t) . The latter contradicts (2.61). 

Thus, from the Instability (in the sense of Definition 2.2) of the unper- 

turbed motion u = 0 of the'truncated" system (1.27) there follows the ln- 

stability oftheunperturbed motion u = 0, zt (6) = 0 of the system (1.24), 

(1.25). The theorem is proved. 

N 0 t e 2.1. In the proof' of the reduction principle we did net make 
use of the fact that the equations of motion (1.24) and (1.25) are stationary. 

The reduction principle as given Is valid also for a nonstationary system 
(1.24),(1.25) and, In the main, the proof repeats the one presented above if 
the following conditions are fulfilled: 

1) The matrix 4(t) Is representable as a sum of a skew-symmetric matrix 
and a matrix with arbitrarily small coefflclents. 

2) The solution of Equation (2.15) satisfies the estimate 

1) uf (6) II_ d B II uo (6) II; exp I-- a (t - toI1 
where B ana c are positive constants. (This condition Is equivalent to 
the condition of existence of a continuous functional V [u(8), t], satlsfylng 
(2.17) to (2.19). 

3) The operator Z [v,O,O, 6, t] satisfies estimate (2.12). 

N 0 t e 2.2. While writing this paper the author learned that the reduc- 
tion principle for time-lag systems was Independently proved by Shlmanov by 
another method. 

The author thanks N.N.Krasovskll for valuable remarks. 
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