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The problem of the stability of the steady-state motion descrlibed by ordinary
differential equations with time-lag is considered in the case when the char-
acteristic equation of the first-approximation system has m roots with zero
real parts and no roots with positive real parts.

It is shown that, as in the case of ordinary equations [1], this problem
is equlvalent to the problem of the stabillty of motlon of a certain finite-
dimensional subsystem of order m obtained by selecting the critical degrees
of freedom. I n this connection the approach to the theory of critical cases
in problems with retardation, worked out by Shimanov [2 and 3], 1s developed.

1. Pormulation of the problem. Let us consider a system whose perturbed
motion is described by equations of the form

0 - Az () + A (t—7)+ X (a(2), 2(t —1) (1)

Here x 1s an p-vector, «+ = cost > O 1is the magnitude of the lag, 4,
A. are constant matrices of the corresponding dimensions, x{x,y) is an
n-vector-function which in the region

=< H, lyl<<H (H = const) (1.2)
satisfles the Lipschitz condition
1X (20, y) — X (z®, y@) [ g (|a® — 2@ + |y® —y@])  (1.3)
with a small quantity g4

g =L(jz®]+ =@ ]+ [yV] + [y ] (1.4)

where 7 and vy are positive constants. Conditions (1.3) and (1.4) charac-
terize the nonlinearity of the component X (z (f), z (! — 1)) 1n (1.1).

In (1.2) to (1.4}, as everywhere in what follows,

n

wi=($00)" .5)
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Let us conslder the space C[_T,o] of continuous functions given on the
interval [— 1, 0]. 1In (4] (p.157) 1t is shown that in the space C[.-q)
Equation (1.1) corresponds to the differential-operator equation

dz, (8) /dt = Px, (9) + R [, (0), 7 (— )] (1.6)

Here % (%) =2(t+ 0)(— 1P <C0) 1is the segment of the trajectory
corresponding to the instant ¢ in the system (1.1); the operator p is
defined by the equalilty

dz(8)/dd (—v<<9<0)
Px(8) = {
( ) Ax(O)—}—Atx (—7) B=0) (1'7)

The nonllinear operator

0 (—T1<<9K0)
X((0), z(—7)) ($=0)
Everywhere in the following 1t 1s assumed that the argument U varies
within the limits — T <{ O < 0. The spectrum of operator p 1in (1.7) is

determined ([%#](p.164)) by the roots of the characterilstic equation

det[A —AE |- 4. e>] =0 (1.9)
Let us assume that Equation (1.9) has m roots i, with Re iA;= 0

(¢ =1,..., m), while the remaining roots have negative real parts. It is
known that m 1s a finité number.

R[z(0), z(—1)] = (1.8)

Let [, Jordan sequences of root elements of the operator p (1.7) cor-
respond to the eigenvalue As of multiplicity m,

ds[8; ks o]
(id =0,..., mg [kc]; kc =1, ..., lo', Zc -+ my [1] - . +m° {lq] =Mmg;m + ...+ m, = m)
(the value i, =0 corresponds to the free term) [5].

Then, the operator conjugate to (1.7) [5]

de(—8)/d(—9) (—1<8<L0)
_Prr(—0) = { ) ) (8 =0) (1.10)
has r elgenvalues 7»3* = —’7~a of multiplicity mgs ; to each of them there

corresponds [; Jordan sequences of root elements of the operator P* (1.10)

do* [— 8 ks, is]

(g =0,..,mgyk]; by ==1,.... 151

o lgFmg]l+— ...+ my [[]=mg; m+... . Lmp= m)

(In (1.10) and everywhere in the following the sign / denotes transposi-
tion.)
Let us denote [5] the quantity (Y (—~ ﬂ)EC[O .]) by the symbol (v, v)

(@, 1) =9 (0)7(0) -- 5 @ (8) Ay (B + 1) dd (1.11)

and we shall represent every element q)(ﬁ)EC[_T,o] in the form
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r g mglksl
(ﬁ) =z (ﬁ) + Z 2 2 dﬁ {ﬁ kcr LO] yO {kc» G] (1'12)
o=1kg=1 ig=0
by setting the constants

Yo ko, i) = fo [@ (B); ko, Mo [kl — ia] = (@, do* [ko, mg [ks] — is]) (1.13)

From (1.12) and (1.13) it follows that z(®) 1is an element of the fune-
tional subspace 1, deflned by the equalities

(L) folz(8); koyia] =0, (o=0...,mylhglikg=1,...,lic=1,...,7) (1.14)

By virtue of (1.12), for the element (1‘)) of the trajectory of system

(1.1) we bave , Iy mglksl

M=z =2 X N dol® ko, ial¥elts koy o] (1.15)

o=1kg=1 ig=0
where Yo [4; Ky io] = fo (2 (8); Ko, m,[kis_—za]. The varianles 2 (8),y (t) = {y, (t)

(i=1,...,m}={y,lt; ko, i}, ic=0,...,ma [ke]; ka=1,..., Li(s= 1,...0))
satlsfy Eguations

dy (£)/dt = Gy (t) + Y [y (8), 2(0), 2 (— )] (1.16)
dz, (8) ] dt = Pz, (8) + Z [y (¢), 5 (0), 2 (— ), v] (1.17)
Here
) _lq o1 0 ...0 7
G = 0 4 @...0 — const {m>(m - matrix) (1.18).

Lo 0 0...Ap

The coefficlents ¢, equal either zero or unity depending on the structure
of the chosen part of the spectrum {A;; Red;y =0; i=1,..., m} of
the operator p defined in (1.7); the m-vector-function Y[y, z(0), z(—T)]
and the real n-vector-operator Z [y, 2(0), z2(—17), #] are determined thus:

Yy, 2(0), z(— )l ={Yi(i=1,... . m)}= {Ya[y, 2(0), 2(—1); ke, fa} =
r lg mglkg)

= do* [0; ks, ma [ks 1—101X(z(0)+2 2 X dal0; ko, i)y, (ko fa] (1.19)

s=1 ig=0

Z(“TH-...); io=0,...,m5[k,,];k3=1,...,10(3:1,,_,,r)}

ly mglky)
Zly, z(0), z(—7), 81 =R [ () + $‘ 21 ‘20 do |0 ks, i) ¥, (Ko, ia] (1.20)

r 1o mglksl
s(_r)+...] 2 )_} 2 do [9; ke io] Yaly, 2(0), 2(—1); ko o]

6 Lhy 1 ig

Let the chosen part of the spectrum contain g zero and p purely imagl-
nary numbers

{?&Q:G {igzi,..‘,q}, {A'Sk; l{{'l*‘k:g;;"sk:}&ﬂ (ii:,.; L,.,,p)'}, p+q=:}ﬂ
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By passing to real form of the eguations, we introduce the notations

v={vii=1,....m} ={Ur;(i %=1, ...,9); Reyy, Imyy, (x=1,..., p/2)} (1.21)

Flv,2(0), z(—0)]={F;; i=4,...,m} = (1.22)
={Y,].; f=1,...,¢ ReYo;ImY,; kE=14...,p/2 for Yr;=2;(/=1,...,9)
Re ys, = vguns ImYs, = vgunn, (K =1,...,p/2)}

Zlv,z(0), z2(—n7), 8] = (1.23)

== {Z [y, Z(O), Z(— T), ‘8‘] for Yp; = v Yrj == Fj i=1,..., ‘}); Re ysk == Ug+k
Im Ys = Ugk+ls Re Ys;‘ = FQv&) Im Ys = Fq+r’t+l (k=1,..., /2)}

Then the equations of motion (1.16) and (1.17) can be represented as

dv /dt = Qv + F [v, 2, (0), 2, (—1)] (1.24)
dz, (8) [ dt =Pz, (®) + Z [v, z (0), z (—7T), 9] (1.25)
Here the constant m X m matrix ¢ has the form
“0a, O ...0.7
00 o, ...0
0=[Va) @=Ll (1.26)
000 rq
000 o _
- 0 —Imi, a, O 0 0 -
Ima, 0 0 a 0
Qa==| = cc e .
0 0 1] ——Im?»splz
0 0 Im).spm 0 _

The problem of the stabllity of system (1.1) and of the system (1.24),
(1.25) are equivalent.

As in the case of systems described by ordinary differential equatlons
{1], the question arises whether the propertles of stablllity of the "trun-

cated” system
dv/dt = Qv + F [v, 0,0] {1.27)

determine the analogous properties of the complete system (1.24), (1.25)
(1.e. of system (1.1)).

In Section 2 below we answer this question under the assumption that the
right-hand sides of system (1.24), (1.25) are subject to certaln restrictions.
As 1in the case of ordinary differential equations [1] we can show that for
analytic right-hand sides of system (1.1) there exists a transformation which
takes the system (1.24%), (1.25) to the form where these conditions are satis-
fied. The proof of the latter assertion is omltted here.

The proof of the reduction principle 1s carried out here analogously to
the proof {*) of this principle in the case of ordinary equations [1].

*)} Erugin has remarked [6] that the proof in [1] contains a serlous inaccu-
racy. In the present paper this remark is taken into account and the proof
has been supplemented.
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metai The reduotion prineiple., In the space C}—no] let us introduce the
ric Y,

9@k = sup (3} [9,0) ) @.1)

By virtue of (1.3) and (1.4) the functions F [z, 2(0), z(—17)], Z[», z(0),
z(—1), 8] in the region

(©) lol<Hy |28 <H, (2.2)
satisfy Lipschitz conditions with small multipliers
|F 12", 2" (0), 2’ (— )] —F [v", 2" (0), 2" (—7)]| << (2.3)

<a(v —v1+]7 () — 2 O
qr=L (2 |+ 2" ]+ 12 @) | 412" (B) ) (Za = const >0)

1212, 2/ (0), 2 (—7), 8] —Z [v", 2" (0), 2" (— ), B[ <<
g (v — "] +]2' (8)— 2" (8)]) (2.4)
=Ly (|o'| + 2"+ |2 (®) |- +]2"(B)}e)"  (Ls=const>0)
Here the quantity vy 1s the same as in (1.%), and the positive constant
H, 1is computed in a specific manner from the constant 5 of (1.2) in accord-
ance with {1.12), (1.5) and (2.1).
We cite some definitions [1]. Consider the system of equations
dv [dt = F [v, t] (2.5)
where the continuous m-vector-function s{v, ¢] satisfies in region (2.1)
the Lipschitz condition
17 [, 2] — F [ ) <L) o — o) (L = const > 0)

and F [0, t] = 0. In region (2.1) let v, t] admit of the representation
F[U, t]:-pl [l), t]+F2 [U, t] (2'6)

where F7,{v,t] denotes the set of terms of order in v higher than ¥ and,
moreover,
1 Fy [y, 1) < K| oV (K = const >0, N = const > 1) @7

where the quantity  1s the same as that in conditions (2.3) and (2.4).

Defilnition 2.1. The unperturbed motion v = O of system (2.5)
is said to be stable regardless of terms of order higher than » , if for
any positive number ¢ , as small as desired, there exists a positive number
n{e, ¥} , depending only on ¢ and ¥ , such that for all solutlons of
Equation (2.5) for which at the initial instant ¢ = O the conditions

v O < K) (2.8
are satisfied, for all ¢t > O the 1inequalilty
lv )] <Ce 2.9

will be satisfled for any cholce of the function ~my[v, t] satisfying esti-
mate (2.7) 4in region (2.1

DPefinttion 2.2. The unperturbed motion » = O of system (2.5}
is said to be unstable regardless of terms of order higher than ¥ , if for
the same conditions on the function F,[v, t] there exists a positive number
¢(¥) , depending only on K , such that no matter how small the number n>0
is, there is found a veetor wv°(x, n) , depending only ¥ and for
which iﬁ (K, M} <y, and, the solution »{¢) of Equations (2.5) with initial
condition
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v (0) = v° (X, n) (2.10)

vl = e &) (2.11)
at some instant ¢ = ¢,= const .

will satisfy the equality

Theorem 2.1. Let the right-hand sides of system (1.24), (1.25)

satisfy in the region (2.1), besides the conditions (2.3) and (2.4), also
the conditlons:

1) The unperturbed motion » = O of the "truncated" system (1.27) is
stable (asymptotically stable) or unstable regardless of terms of order
higher than ¥ 1n the sense of Definitions 2.1 and 2.2.

2) The operator Z [v, 0, 0, 3] satisfies the estimate
“ZW()Oﬁ] Lﬂﬂm“ wﬁﬂmﬂ>Qﬁ:mew)(zu)
Then the property of stability of system (1.24%), (1.25) (and, consequently,

of system (1.1)) coincides with the property of stability of the "truncated”
system (1.27).

Proof . Let the unperturbed motion » = 0 of the "truncated" system
(1. 27) be stable (in the sense of Definition 2.1).

Without loss of generality we can take it that the matrix (1.26)
Q={Q,,_,+ (2.13)
where the matrix @* satisfles the estimate

le*l<er (g, arbltrary positive number) (2.14)

Indeed, this always can be achieved by a nonsingular linear real trans-
formation of the vector variable v .,

In the subspace [, {1.14) let us consider Equations
:1_"1@) = Puy (9), uy (9) € Ly (1-14) (2.15)
Any solution u;(9) of system (2.15) (with (c uo(9)& Ly(1.14)) satisfies the

estimate [5]
e (BNl << Bl uo (9)], exp [— Bt] (B, B = const >0) (2-16)

But then on the basis of the results.in [4] (pp.191-193) in the subspace
z, (1.14) a continuous functional V [u (8)], satisfying the estimates

arflu ()2 [w(8)] <eaffu (82 (2.17)
AV .
(57 S 01 O1 .

|V [ (8)] — V [u® (0] < cal|u® (8) — u® (8)], max (| u™ (B)],, | u® (B).) (2.19)
can be constructed.
Here e@31,..., ¢4 are positive constants.
Let us make a change of variables in (1.24), (1.25) by setting
2(®) =l & (0) (2:20)

Transformation (2.20) will be used only in the reglon G C G (2.1) of the
space {v, z(®)}, where the quantity [£(8)]; is bounded

(G:)  1E(ON< He (2.21)
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Here y, 1s some positive constant.
In the variables v (t), £;(®) Equations (1.24), (1.25) take the forms

—(di—?t) = Qv + F [Tl, O’ 0] + F* [vv Et (O)s E.»t (_ T)] (222)
d-——it‘ifﬁ) = P (8) — N || v |2 0'QuE; (8) + Z2* [v, & (0), & (— 1), 9] (2.23)
where the functilons
F*[0,E(0), E(—)]=F[v, [2[VE©), [2|NE(— W) —F[,0,0]  (2.24)
Z* (9, £(0), E(—7), 81 =[2[ N Z[v, ||V § (0), [0}V E(—7), 8] —

— Njo|2o'F [v, 2|V £ (0), | 2|¥ & (— ) (2.25)

satisfy the estimates
I F* [2, £ (0), & (— V)| << Ls |2 [N+ {Ls = const >>0) (2.26)
Z*[0,E(0), E(—T), 8]=0 (2.27)

in the region G, (2.21), by virtue of conditions (2.3), (2.4) and (2.12).

Let there be given an arbitrary positive number ¢ < #, . In the region
Gy (2.21) let us consider the hypersurface ¥,

(M) V€ (8)] =l(e) (2.28)
where 1,(e) 1s a constant satisfying the condition
0 << iz (e) < cye? (2.29)
Then, by virtue of (2.17) the estimates
pe) <|E(O)N.<e for E(¥) from M (2.30)

are satisfied, where p(e) is some positive constant.

Let us compute 1im sup AV/At as At = + O by virtue of (2.23) on the
hypersurface ¥, (2.28), taking estimates (2.17) to (2.19) and (2.30) into
account. For brevity we introduce the notations: E; [#; (2.23)] 1s an element
of the trajectory of system (2.23) and gt"[{); (2.15)] is an element of the
trajectory of system (2.15).

We have
. AV . AV . 1
lim su (_.) < lim su (__) 4 limsup — |V 4 (2.23)]] —
lAi—»-{-op At (2.23)\ At->+¢? At /(2.15) At—»-{-(? Atl [E”Al[ ( N

—V [brpa 195 @ADIIS — sl B O+ calim sup oo 118,08 220)] —
— iyae [0 @A) max (8,0 105 @23)], [ Ea 185 RADIN < — o1& (O +

+ Nz[21 Qo || (B)2 + call Bt (BN} 2* [, &4 (0), &t (—1), Hl.

Here 1t was assumed that §;[0; (2.23)]'= E [0s (2.15)].

Taking into account that ?’ {Q} v=0, when d;=0 and choosing the num-
ber ¢, in (2.14%) from the condition ¢,< ¢3/¥ on the hypersurface p,
(2.28) we obtain the estimate

{“ms“" (ﬂ) } < — (ea— Nex) p2(e) + e | 2% [2, E (0), E (— 7), O], (2.31)
Atto \At /(2.23)] & (®)=M,

From the property (2.27) of the function Z*{[7, E(0), §(—1), ¢] and from
estimate (2.31) it follows that there exists a positive number h(e)< e such
that

{lim sup (_A_K) } <0 tor |2 <h(e)<e (2.32)
At>40 \ At /(2.23)) & (8)=M,
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Let §° (8) bYe an arbltrary function satisfying the condltion

8 (D) G, (2.21) for t >0 (2.33)
In (2.22) let us put E£;(9)=E&,°(¥). We get quations
dv [dt = Qv -+ F;[v] + F* v, 1] (2.34)

Here the function m[v] denotes the set of terms of order higher than ¥
in the function #{v,0,0] of (1.27) and, consequently, by virtue of (2.26)
and of condition (1) of the theorem, the function

F* [y, t] = F [»,0, 0] — F1[v] 4 F* [, £,°(0), E° (— 7)]
satisfies the estimate
| F* [, 2] < Ka || 2| V*Y (2-35)
when tS° e GE (2.21)

Here py, 1s a positive constant depending only on the structure of Equa-
tion (2.22) and not depending on any particular cholce of §° ) & Gz (2.21)
In accordance with the condition for the stability of the "truncated" system
(1.27) regrdless of terms of order higher than ¥ , from the number hse) we
can find a positive number 5(h,(e),r1§ such that for all solutions of (2.34)

which satisfy
o (O) <8 (h(e), K1) (2.36)
at ¢ = 0, the estimate
o (e <k (e) (2.37)
wlll hold for all ¢ > O .

However, if the function §,°(#) satisfies (2.33) on the interval [O,T =
= const], then all the solutions of (2.34), which at the initial instant
t = 0 satisfy inequality (2.36), will satisfy inequality (2.37) on this
same 1interval.

In the space {v,z (ﬂ)} let us consider the hypersurface M,
(Ms) Viz(@®)]=he) (2.38)

where 1,(c) 1s some sufficiently small positive number which will be used
later. In the space {v, z (8} let us define two regions @, and G, sy set-

vine (Gy) lol<n(e), VIE@I<hl) (2.39)
Gs) lol<n(e), VIE®I>hE), VI[z®I<ke (2.40)

Here n(e) 1s a positive number satisfylng conditlons
1(e) <8 (2 (e), Ky) (2.41)
VIEDI<LE) tfor |E@I <@ (2.42)

Such a cholce of the n(e) is possible by virtue of property (2.17).

_ From (2.;7), (2.39) and (2.40) it follows that the union G* of reglons
G, and G, (G* = G,UG;) contains the null element {v =0, z () = 0} as an
interior point. For sufficiently small I,(e) we have G* C G (2.1).

Let us first assume that the initlal perturbations belong to the region
m (2.39). Since G, C G; (2.21)the equations of motion can be consldered in
the forms (2.22) and (2.23). Let wv(¢) and g, (8) be arbitrary solutions of
(2.22), (2.23), for which the inequallties

v (O < 7 te), & (M. <me) (2.43)
are satisfied at the initial instant ¢ = O.
From (2.43) it follows that for all ¢ > O the inequalities

v @<e, 1Ee (D). <e (2.44)

are satisfied.
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Indeed, the second inequality in (2.44), satisfied for ¢ = O , will by
contlinuity be satlsfied for sufficiently small ¢ . Let ¢ = T be the first
instant at which ||, (§)|, = e. But then, on the basis of (2.28) to 2.30),

VEr®i>he) (2.49)

whence by virtue of the choice of nl(e) 1t follows from (2.42) that there
exists an instant ¢t =t, & (0, T) such that the conditions

£, () € My, {lim sup (AK)} >0 (2.46)
|At>+o \AL /g eM,

will be satlsfied simultaneously.

The function &, (#) satisfies condition (2.33) when ¢t & (0,7T). Further,
since the function v(t) will be one of the solutions of Equation (2.34%) for
§ °(9) = §, (0) and since the number n(c¢) 1s chosen in accordance with (2.41),
inéquality (2.37) will be satisfied for v»(¢) in the whole time interval
éO,T and, consequently, also the inequality (2.32). The latter contradicts

2.46). Thus, inequality (2.45) 1s satisfied for all ¢ > O , But then,
from the preceding discussion it follows that the function ov(¢) satisfies
inequality (2.37) for all ¢ > O , whence by virtue of the condition n(e)<e
it follows that the first estimate in (2.4%) holds for all ¢.> O .

Thus, we have proved the conditional stability of the unperturbed motion
v() =0,z (0 =0 of the system (1.24), (1.29) with respect to the initial
perturbations zq () from the region @, (2.39) which are constrained by
the conditions (2.43).

Let us show that from such a condltional stability follows the stability
of the motion v({) =0,z (8) =0 wlth respect to any sufficlently small
initlal perturbations.

In (2.40) we choose the number 1 {(e) from the conditions

Iz (e) <&, I3 () < crcap? (e) 2V (e) (2.47)
. AV [z (9)]
1;‘{‘3;‘(? ( At )(1.24).(1.25) <0 (2.48)

for 5 () from N, (2.38) in region ¢, (2.40).

The second condition in (2.47) signifies that in the space {v,z(ﬂQ} the
hypersurface V [z (§)] = I, (e) (2.38) intersects the hypersurface V [ (8)] =
= 1;(e) (2.28) when " |v||< 1 (€), so_that from the region ¢, (2.40) it is
impossible to derive the element {V, # (#)}, by continuously deforming 1t and
yet not intersecting hypersurface (2.28) or (2.38).

It is possible to select the number 12(e) so as to satisfy condition
(2.48) also. Indeed, let us compute limsup AV [z, (D))/At as st -+0 along
the motion of system (1.24), (1.25). Taking estimates (2.17) to (2.19) into

account here, we get
(AV [z (9)]

At )(1.24).(1.25) S—alza®)i? +

lim sup

At-+40

+ealze B (122, 0,0, 81l +1Z[v, 2(0), z (—7), 8] —Z[7,0, 0, ]} (2.49)
Since the condition

|
Te ¥ < B = (8. (2.50)

is satisfied in the region ¢, (2.40) by virtue of (2.17), then from the esti-
mates (2.42, (2.12), (2.38), t2.17), (2.49) follows the possibility of choos-
ing an 1,(e) satisfying (2.47) and (2.48).

Let us consider an arbitrary motion (), z, (0) of system (1.24), §1.25)
whose inltial perturbation 12 (0), %(ﬂ)} lies in the reglon ¢4, (2.40 .

By virtue of the cholce of 1,(e¢) in accordance with (2.47) and (2.48),
the motion ¢ (1) z, (U), starting from the point {v (0), z, ()} € G, either
remains 1n the region (., for all time, and then by the way 1n which the
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latter was constructed, the inequalities

lo(®]<e, bz (3). <e (2.51)

will be satisfiled for all ¢ O (moreover, limv (t) =0, limz; V) =0 as

t - =), or the motion v (f), z, () leaves the region ¢, (2.40) thrcugh the
hypersurface (2.28) and here necessarily when || v} <7 (¢). In the latter case,
by what was proved earller, when the motlon () ; (§) falls into the region
¢. (2.39) it remains for all time in the region’ !

[2l<h(e) VIEMI<h(e) (2.52)

Thus, the stability of the unperturbed motion v (f) = 0, z, (§) =0 of the
system (1.24,(1.25) (and, consequently, the stability of the unperturbed
motion x = O of system (1.1)) follows from the stability (in the sense of
definition 2.1) of the motion ©» = O of the "truncated"system (1.27).

The geometric meaning of the reasoning carried out is clarified in Fig.l.

Now let the unperturbed motion of system (1.27) be asymptotically stable.
Let us consider an arbitray motlon u (t), & (9)

{y2(9)=01} of system (2.22),(2.23) with the initial con-

ditions \ o ©9

L — lo (O <, & (@) .<n  (2.53)
‘t\\w ‘ VIE(®)]=1,(€) where n 1s a sufficiently small positive num-
! ber. By virtue of the conditions of the theo-

\k, rem and on the basis of what has been proved,

Viz(9)1=1,(€) the unperturbed motion p =0, §, (9) = 0 of

system (2.22),(2.23) is stable and, consequently,
fv=gz(s)i the function E! () satisfies condition (2.33).
But when & (U) = § () , the unperturbed
motion v = O of system (2.34) will be asymp-
totically stable. And since the function v(¢)
1s one of the solutions of (2.3%) when E,° ()=
Fig. 1 = g,(ﬂj, then 1t necessarily satisfies the
1limit relation

llm v (t) = O for {-— o0 (254)
for sufficiently small = in (2.53).
We can show that §&; () also satisfies (2.54).

Let 7 ©be an arbitrary positive number as small as desired. Conslder the
set M, of functions G0

(M) pO)E6; 21, VIE®)] > (2.55)

Let us substitute the function wv(t) into (2.23) and, under condition
(2.54) compute 1lim sup aV/a¢ as At =+ 0O by virtue of the equatlons
obtalned, one of whose solutions will be function g‘(ﬂ): By repeating the
arguments used to derive the estimate (2.32) and by taking the limit relation
(2.54) for function wuv(¢) into account, we conclude that there exists such
an instant ¢ = ¢, beginning with which the lnequality

AV } -
i =2 — for t>1 (2.56
{ll;xnrl_fig( At ><2-23) qoen, ST fr 10 )

will be satisfied for all solutions of Equation (2.23) when v = v(¢) and,
in particular, for &, (#). In (2.56) the quantity vy 1s some positlve con-
stent. From (2.56) it follows that there exists an instant ¢ = ;> t)
beginning with which the inequality
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Vg (di<? (2.57)
is satisfied.

Indeed, if such an instant ¢ = ¢, were not to exist, 1.e. & () & M,
for ¢ > ¢,, then according to (2.563 the inequallityw () <w () — 9y (& — AN
would be satisfied for w (1) =V [§ ()] which contradicts the esti-
mate (2.17) when :>w () /v -+t .

Thus, Inequality (2.57) is satisfled for all > %, = const. But from (2.17)
and {2.57), because i is arbltrary, there follows the limit relation

imEg () =0 for t— o0

which together with {2.54) completes the proof of the asymptotic stability
of the motlon yp =0, z,(0) = 0 of system (1.24},(1.25) with respect to ini-
tial perturbations constrained by the condition l ga ® HT <

From the proven conditional asymptotic stability follows the asymptotic sta-
bllity of the unperturbed motion v =0, z () = 0 of system (2.22),{2.23)
with respect to any sufficiently small perturbation v (0), z, (§).

The proof of this assertion completely repeats the corresponding reasoning
of the proof of the stability of the motlon v =0, 5 (3)=0 (given above) and,
therefore, is not carried out here.

Finally, let the unperturbed motion v = 0 of the "truncated” system
{1.27) be unstable {in the sense of Definition 2.2}.

Consider Equation (2.34). For the "truncated" system (1.27), according
to the condition for instabllity regardless of terms of order higher than ¥
there exists a positive number e(X;), depending only on ¥,, such that how-
ever small the number n > ¢ may be, we can find a vector v°{k,,n), depend-
ing only on X; and n , for which §fz§° K, n | <%, and in connection with
this the solution o»{z)} of Egquation {2.3%4) with the initial condition

v(0) = +° (K, n) (2.58)
will satisfy the equality

fe )] = he) e (2.59)

at some instant ¢ = ?;= const , where h{c¢)} is defined in {2.32}.

Let us suppose that the unperturbed motion w(f) = 0, 2z (8)=0 of sys-
tem {1.24),(1.25) 1is stable: there exlsts a positive number = such that
for all solutions of Equations (1.23) and {1.25) with the initial conditions

2 ()<, f2o (B) - << (2.60)
O i<ale,  Ja@®)E<hE) (2.61)

will be satisfied for all ¢ > O .

the inegualities

Let us pick out the solution p*(¢), z* (9) with the initial conditions
v* (0) = v* (K4, n) {2.62)
2* () =), (e(®]:- <min(n, [»°["VLE)/Ve)  (263)
From (2.63) the estimate
V [&8* (1] <lla(e) (2.6%)
follows by virtue of (2.17) for the function E* (%) m{v"‘(tﬂ‘{'\'m* (%) at
the initial instant ¢ = O .
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Then from (2.32) and (2.64) follows the inequality

VIEX(O))<li(e) for £>0 (2.65)
From the latter, by virtue of (2.29), follows the estimate
[E* (B)].<e 1o >0 (2.66)

and, consequently, gﬂ‘(B) satisfies condition (2.33).

Let us set §t° (ﬁ) — gt* (ﬁ) in (2.34). Then, the solution of the equa-
tion obtalned, with the initial condition v (0) = »° (K, ) will coincide
with the function v*(t) at least until |[v(t)||< h(e). But condition (2,59)
is satisfied for v(¢) . The latter contradicts (2.61).

Thus, from the instability (in the sense of Definition 2.2) of the unper-
turbed motion v = O of the "truncated" system (1.27) there follows the in-
stability of the unperturbed motion p» = 0, z (¥) = 0 of the system (1.24%),
(1.25). The theorem is proved.

Note 2.1. In the proof of the reduction principle we did nct make
use of the fact that the equations of motion (1.24) and (1.25) are stationary.

The reduction principle as given is valid also for a nonstationary system
(1.24),(1.25) and, in the main, the proof repeats the one presented above if
the following conditions are fulfilled:

1) The matrix Q(t) 1s representable as a sum of a skew-symmetric matrix
and a matrix with arbitrarily small coefficients.
2) The solution of Equation (2.15) satisfies the estlmate

e (8) 1, < Blluo (3)]]; exp [—a (¢ —to)]
where B and o are positive constants. (This condition is equlvalent to
the condition of existence of a contlnuous functional V [y (9), t], satisfying
(2.17) to (2.19).
3) The operator Z [v,0,0,%,t] satisfies estimate (2.12).

Note 2.2. While writing this paper the author learned that the reduc-
tion principle for time-lag systems was independently proved by Shimanov by
another method.

The author thanks N.N.Krasovskii for valuable remarks.
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